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SUMMARY

Higher-order convection schemes have been developed for the essentially hyperbolic systems of reservoir
simulation and can significantly enhance solution quality. Locally conservative full-tensor flux-continuous
finite-volume schemes have also been developed for the porous medium pressure equation with general
geometry and permeability tensors on structured and unstructured grids. These schemes remove O(1)
errors induced by standard methods, and are now recognized as an essential component of any numerical
method designed for reservoir simulation and modelling flow in porous media.

In this paper, novel higher-resolution hyperbolic conservation law schemes, designed for convective
flux approximation on unstructured grids are coupled with general full-tensor continuous Darcy flux
approximations. The schemes are developed for multi-phase flow in porous media. Benefits in terms of
improved front resolution are demonstrated. Comparisons with current methods including the control-
volume finite element (CVFE) method highlight the advantages of the new formulation for flow resolution
in reservoir simulation. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Reservoir simulation of multi-phase flow processes involves solving an essentially hyperbolic sys-
tem for fluid transport coupled with an essentially elliptic system for pressure and Darcy velocity
[1], see also Reference [2]. For a given geological description, the accuracy and efficiency of reser-
voir simulation are dependent upon the grid quality, the type of the numerical approximation for
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1060 M. G. EDWARDS

both the essentially hyperbolic and elliptic differential operators, the efficiency of the solution pro-
cess, and the accuracy of the upscaling algorithm. The focus here is on the numerical approximation
and coupling of the essentially hyperbolic and elliptic differential operators for general grids.

Higher-order convection schemes continue to be developed for the essentially hyperbolic sys-
tems of reservoir simulation, e.g. References [3–10]. These schemes require an extended support
to obtain higher-order accuracy and are constructed such that the solution remains monotonic.
These methods yield benefits in terms of improved front resolution and have been successfully
demonstrated for a variety of multi-phase flow problems in reservoir simulation.

Locally conservative flux-continuous full-tensor finite-volume schemes also continue to be
developed for the essentially elliptic component of the reservoir simulation system [11–23]. These
schemes are control-volume distributed (CVD) where flow variables and rock properties are asso-
ciated with the control-volumes of the grid and provide a consistent discretization of the porous
medium pressure equation applicable to general geometry and permeability tensors on structured
and unstructured grids, e.g. Reference [12]. Methods of this type are also known as multi-point
flux approximation schemes (MPFA) [17]. Prior to the development of CVD schemes, mixed finite
element methods [6, 24–28] offered the only schemes capable of preserving flux continuity for
full-tensor flows. However, mixed methods solve for velocity components and pressure in a glob-
ally coupled system and for two-dimensional structured grids involve solving for 3 times as many
degrees of freedom as (the more efficient) CVD methods. In summary the CVD schemes remove
O(1) errors induced by standard methods in cases when full tensors are present, maintain flux
continuity and retain the same number of degrees of freedom as standard schemes (i.e. one discrete
pressure value per control-volume). These schemes are now recognized as an essential component
of any numerical method designed for reservoir simulation and modelling flow in porous media.

In this paper, a novel higher-order scheme with local maximum principle is presented for two-
dimensional unstructured grids. The higher-order convective flux approximation is coupled with
consistent and efficient continuous Darcy flux approximations that are applicable on structured and
unstructured grids comprised of triangles and quadrilaterals in two dimensions. The coupling of
higher-order phase component approximations with the general tensor flux-continuous formalism
provides an improved and novel scheme for reservoir simulation, applicable to multi-phase flow
while using an optimal number of degrees of freedom within the discretization. Benefits of the
resulting schemes in terms of front resolution and medium discontinuity resolution are demonstrated
for two-phase flow test cases in two dimensions.

Flow equations are presented in Section 2. A summary of the flux-continuous formulation
is presented in Section 3. Extension of the higher-order schemes to general unstructured grids is
presented in Section 4. The flux-continuous formulation is contrasted with the control-volume finite
element (CVFE) formulation [29] in Section 5 where the key advantages of the new formulation
are discussed. Two-phase flow results are presented in Section 6 that demonstrate the advantages of
the new higher-order flux-continuous formulation. Comparisons with current methods in reservoir
simulation and with the standard control-volume finite element CVFE scheme [29], which uses
exactly the same number of degrees of freedom, serve to highlight the advantages of the new
formulation for reservoir simulation. Conclusions follow in Section 7.

2. FLOW EQUATIONS

Without loss of generality in terms of the numerical methods applicability, the schemes presented
here are illustrated with respect to two-phase flow models, with unit porosity and where capillary
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HIGHER-RESOLUTION HYPERBOLIC–ELLIPTIC FLUX-CONTINUOUS 2-D 1061

pressure and dispersion are neglected. The integral form of the flow equations is given in anticipation
of the generalization to general geometry and finite-volume discretization. In order to simplify
notation gravity will be omitted from the formalism, however once the discrete flux is defined
gravity can be included immediately. After integrating over a control volume �cv with surface ��cv
via the Gauss divergence theorem, the continuity equations for phases p= 1, Np are written as

∫
�cv

�Sp
�t

+
∮

��cv

Vp • n̂ ds =mp (1)

where the integral is taken over �cv and where Sp, Vp and mp are the pth phase saturation, Darcy
velocity (defined below) and specified phase flow rate, respectively. Since the pore volume must
always be filled by the fluids present, this gives rise to the volume balance

Np∑
p=1

Sp = 1 (2)

The momentum equations are defined through Darcys law where the pth phase velocity is defined by

Vp = fpVT (3)

here fp is the fractional flow of phase p and VT is the total Darcy velocity defined via

VT = − �K∇� (4)

where �= ∑Np
p=1 �p is the total mobility, with pth phase mobility given by

�p = krp/�p (5)

where �p and krp are the respective phase viscosity and relative permeability. K is a diagonal or
full elliptic Cartesian permeability tensor, � is the pressure and ∇ = �xi .

Neumann boundary conditions apply on solid walls with zero normal flux. Inflow–outflow
conditions apply at wells where fluxes/pressures are prescribed. Initial data in terms of saturation
and pressure fields are also prescribed. Further details can be found in Reference [1]. The closed
surface integral of phase velocity can now be expressed as the sum of outward normal phase fluxes
Fpi over each of the surface increments of the control-volume �cv, viz

∮
��cv

Vp • n̂ ds =
NS∑
i=1

Fpi (6)

where NS is the number of surface increments that enclose the volume �cv. The outward normal
phase flux in the i th normal direction is written in terms of the general tensor T as

Fpi = −
∫

��cv

fp�
ND∑
j=1

Ti j�� j
d�i (7)

where �i are local curvilinear parametric coordinates, �i is the parametric coordinate surface
increment and �� j

is the derivative of � with respect to � j and

T= JJ−1KJ−T (8)
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1062 M. G. EDWARDS

is the general tensor defined via the Piola transformation which is function of the Cartesian
permeability tensor and geometry, where Ji j = �xi/�� j is the Jacobian of the local curvilinear
coordinate transformation. The grids considered here generally give rise to non-zero cross terms
with Ti j �= 0 for i �= j in the general tensor. Full tensors can arise from upscaling, and orientation
of grid and permeability field. For example, by Equation (7), a diagonal anisotropic Cartesian
tensor leads to a full tensor on a curvilinear orthogonal grid. In two dimensions the general tensor
coefficients take the form

T11 = (K11y
2
� + K22x

2
� − 2K12x�y�)/J

T22 = (K11y
2
� + K22x

2
� − 2K12x�y�)/J

T12 = (K12(x�y� + x�y�) − (K11y�y� + K22x�x�)/J

(9)

where J = x�y� − y�x� is the Jacobian determinant. For incompressible flow Equation (1) is
summed over the Np phases and Equation (2) is used to yield the pressure equation

NS∑
i=1

FTi = 0 (10)

away from sources and sinks (or wells) where the total flux FTi involves a product of total mobility
and single-phase flow flux and is given by

FTi = −
∫

��cv

�
ND∑
j=1

Ti j�� j
d�i (11)

and ND is the dimension number.

3. FLUX-CONTINUOUS CONTROL-VOLUME DISTRIBUTED (CVD) APPROXIMATIONS

A given primal grid is comprised of elements, or cells, with corners defined by the grid vertices.
After generating the grid, there is a choice to be made in flow and rock variable representation. In
reservoir simulation flow and rock variables are always CVD. Thus, the choice is between distribut-
ing flow and rock variables to vertex-centred control-volumes, where polygonal control-volumes
are built around the grid vertices (described below see Continuous Flux Approximation in Higher
Dimensions) or distributing variables to cell centres where primal grid cells act as the control-
volumes. In the cell-centred case a dual grid is then constructed in order to construct the local
flux continuity constraints. In the formulation presented here the former (vertex-centred) option is
selected. While cell-centred schemes for reservoir simulation are common [1, 15–18, 22, 23], their
generalization to the quite general grid types considered here are still under development and will
form the subject of future work.

The schemes presented here are therefore vertex centred, derived in a CVD framework, where
for a given control-volume surrounding a grid vertex, flow variables are assigned to grid vertices
and rock properties are piecewise constant with respect to the control-volumes. The physical
constraints that must be enforced are continuity of pressure and continuity of normal flux across
interfaces (control-volume faces) that separate changes in permeability tensor.
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HIGHER-RESOLUTION HYPERBOLIC–ELLIPTIC FLUX-CONTINUOUS 2-D 1063

3.1. Continuous flux approximation in one dimension

Before introducing higher-dimensional Darcy flux approximation schemes we will recap on the
basic principles that govern the derivation of the most classical and common one-dimensional
schemes employed in reservoir simulation [1, 12]. Consider a grid of nodes in one spatial dimension.
Primal grid cells are defined by the intervals between nodes or vertices with index i . Control-
volume faces are defined by the interval mid-points and a control-volume surrounds each vertex in
the domain. The integral of the one-dimensional pressure equation over a control-volume reduces
to the difference of fluxes at the interfaces

−((K�x )i+1/2 − (K�x )i−1/2) = 0 (12)

and an appropriate approximation of flux −(K�x )i+1/2 at interface i + 1/2 must now be con-
structed at each interface. A discrete value of permeability Ki and pressure �i is assigned to each
control-volume. The continuity constraints are built into the scheme by a sub-cell flux construction.
The first step involves introducing temporary interface pressures � f on the control-volume faces
that separate changes in permeability and give rise to a continuous variation in discrete pressure.
The approximate pressure field then assumes a piecewise linear sub-cell variation between the
vertex and continuous interface pressures.

The second step involves the actual sub-cell flux reconstruction where piecewise constant sub-
cell fluxes are defined on the left- and right-hand sides of each control-volume interface. Pressure
and flux continuity conditions are imposed by equating fluxes on the left- and right-hand sides of
the interface to arrive at one local equation for each discrete cell face pressure viz:

−Ki (� f − �i )/(h/2)= − Ki+1(�i+1 − � f )/(h/2) (13)

From which it follows that the cell face pressure can be expressed as a linear combination of the
adjacent cell vertex pressures in an a priori elimination step, viz

� f = (Ki�i + Ki+1�i+1)/(Ki + Ki+1) (14)

Upon back substitution into Equation (13) the well-known approximation for single phase flux at
an interface is obtained, and is given by the product of discrete pressure gradient multiplying the
harmonic mean of adjacent cell permeabilities.

Fi+1/2 = − 2Ki Ki+1(�i+1 − �i )/(Ki + Ki+1)h (15)

3.2. Continuous flux approximation in two dimensions

In this section, we shall first focus on approximation of the incompressible single-phase flow equa-
tion and present an overview of the flux-continuous formulation [12]. The primal grid considered
here can be a hybrid composed of triangles and/or quadrilateral cells in two dimensions with no
restriction on structure. A polygonal control-volume is built around each grid vertex by joining
(triangular or quadrilateral) cell centres with cell edge mid-points in (two dimensions) Figure 1, for
all cells that share a common grid vertex. The resulting set of polygonal control-volumes defines
a dual grid relative to the primal grid. The construction of the dual grid can also be viewed as a
decomposition of primal grid cells in to sub-quadrilateral cells in two dimensions, three for a trian-
gle, four for a quadrilateral. The decomposition is followed by a local assembly or recomposition
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Figure 1. (a) Segment of primal grid; (b) control-volume; (c) dual grid (bold) and fluxes in cells
c1 and c2; and (d) sub-cell flux basis (dotted triangles).

at each primal grid vertex of all sub-cells that are attached to the vertex, Figure 1(b). Rock per-
meability and porosity are assumed to be piecewise constant over each polygonal control-volume
Figure 1(b), thus rock properties can therefore be discontinuous over the control-volume faces.

The finite-volume formulation begins with the integral form of the flow equations, c.f. Equation
(1). The Gauss divergence theorem is applied to the integral of divergence locally over each
control-volume. A unique discrete flux is then constructed for each control-volume face (see
below) and the closed integral of flux is approximated by the sum of discrete outward normal
fluxes. For a given face that is common to two neighbouring control-volumes, a unique flux is
subtracted from the left-hand control-volume while the same flux is added to the right-hand control-
volume. Consequently, the discrete integral form of the flow equations is locally conservative with
a summation over all control-volumes leaving only the sum of global domain boundary (outward
normal) fluxes. Thus, the schemes considered here are locally conservative over the faces of the
polygonal control-volumes that contain the discrete permeability tensors with flow variables defined
at their vertices.

In this formulation, the construction of the elliptic finite-volume scheme begins by building
fluxes on the sub-cell faces that lie inside a primal grid cell [12]. For example, for a quadrilateral
primal grid cell c1, Figure 1(a) the interior sub-cell faces are labelled (N1,S1,E1,W1) to indicate
the North, South, East and West cell faces locations. Fluxes are defined along the normal to each
control-volume sub-cell face inside the primal quadrilateral cell, Figure 1(c), leading to the four
sub-cell fluxes

FN1, FS1, FE1, FW1 (16)

while for the triangular cell c2 there are three sub-cell fluxes,

FN2, FS2, FE2 (17)

as indicated in the triangle of Figure 1(c). The derivation of the (continuous) fluxes is summarized
in the next subsection. Each sub-cell flux is associated with a unique cell edge and once defined,
the sub-cell fluxes are accumulated with respect to their cell edges within an assembly process.
The edge index e(i, j) refers to the j th edge attached to vertex i . The net edge-based single phase
flux Fe(i, j)(�) associated with edge e(i, j) is comprised of the sum of adjacent sub-cell fluxes
that belong to the primal grid cells with common edge e(i, j). For example, in a two-dimensional
domain interior two adjacent sub-cell fluxes are assembled for each cell edge. This is illustrated
with reference to vertex i and local edge e of Figure 1(a) and the local fluxes of Figure 1(c), in
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HIGHER-RESOLUTION HYPERBOLIC–ELLIPTIC FLUX-CONTINUOUS 2-D 1065

this case the net edge-based flux is given by

Fe(i, j) = FE1 + FN2 (18)

After assembly of net edge-based fluxes, the discrete scheme for each vertex i is completed with
the closed integral of net Gaussian flux approximated by the sum of the net edge-based fluxes
corresponding to edges connected to the i th vertex.

For single-phase flow on unstructured grids the assembled finite-volume scheme at vertex i can
be written concisely as

NedV∑
j=1

Fe(i, j)(�) = Mi (19)

where summation is over all NedV edges passing through the i th grid vertex, (Mi denotes a spec-
ified flow rate at vertex i , or is zero otherwise).

3.3. Control-volume flux and continuity

For the CVD cell-vertex formulation, in higher dimensions a consistent normal flux approximation
is constructed that respects continuity of pressure and flux across the control-volume interfaces
within each primal grid cell. For a quadrilateral cell of the primal grid, this is achieved by
introducing four auxiliary continuous interface pressures Uf = (�N, �S, �E, �W), one per control-
volume sub-face as indicated in Figure 1(c). Four sub-cell triangular basis functions are then
formed by joining the cell vertices (with locally numbered vertex pressures (anti-clockwise, lower
left hand vertex is 1) Uv = (�1, �2,�3,�4)) to the positions of the adjacent interface pressures
Figure 1(d), and eight sub-cell normal fluxes are defined, two per triangle. Flux continuity is
then imposed by equating fluxes on the left- and right-hand sides of each of the four interfaces
resulting in

FN = − 1
2 (T11�� + T12��)|4N = − 1

2 (T11�� + T12��)|3N
FS = − 1

2 (T11�� + T12��)|1S = − 1
2 (T11�� + T12��)|2S

FE = − 1
2 (T12�� + T22��)|2E = − 1

2 (T12�� + T22��)|3E
FW = − 1

2 (T12�� + T22��)|1W = − 1
2 (T12�� + T22��)|4W

(20)

where the general tensor T of Equation (9) is approximated locally by resolving physical full-
tensor fluxes with respect to the sub-cell geometry and control-volume permeability. The discrete
pressure field has a piecewise linear variation over each sub-cell triangle c.f. Figure 1(d), and
consequently approximations of the derivatives ��, �� are linear functions of Uf and Uv. Here
� | j� denotes interface flux � at location � and state of volume j . The actual position of � along
each sub-cell face defines both the point of continuous pressure and the flux quadrature (Figure
1(c)), and in turn leads to a family of schemes as shown in Reference [16]. The effect of quadrature
point upon accuracy is explored in the convergence study of two-dimensional single-phase flow
problems on cell-centred quadrilateral grids and polygonal vertex-centred grids is presented in
Reference [30].
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The flux continuity formulation carries over directly to triangular cells [12, 14, 19–21]. In this
case, three flux continuity conditions are imposed within each triangle and are expressed as

FN = 1
2 (T12�� + T22��)|1N = − 1

2 (T11�� + T12��)|3N
FS = − 1

2 (T11�� + T12��)|1S = − 1
2 (T11�� + T12��)|2S

FE = − 1
2 (T12�� + T22��)|2E = − 1

2 (T12�� + T22��)|3E

(21)

where a local coordinate system is associated with each sub-cell of a given triangle, Figure 1.
Interface pressures Uf = (�N, �S,�E) are introduced on the sub-quadrilateral boundaries in a
similar fashion, and three sub-cell triangular basis functions are formed by joining vertices with
pressures Uv = (�1, �2,�3) to adjacent interfaces with pressures Uf. As before, the pressure
assumes a piecewise linear variation over each sub-cell triangle and the derivatives ��, �� are
linear functions of Uf and Uv. The symbol � | j� denotes interface flux � at location � and
state of volume j as above. Further schemes which have symmetric positive definite matrices for
single-phase flow are presented in References [11, 12, 31].

The systems of fluxes of Equations (20) and (21) are rearranged in the form

F= ALUf + BLUv = ARUf + BRUv (22)

and thus the interface pressures can be expressed locally in terms of the cell vertex pressures,
leading to a generalization of Equations (13)–(15). After elimination of the Uf from Equation (22)
it follows that

F= (AL(AL − AR)−1(BR − BL) + BL)Uv (23)

Convergence of the method has been verified by experiment [16, 30, 32]. The fluxes of Equation (23)
can also be written as a linear combination of cell-edge potential differences [12], demonstrating
the consistency condition that flux is zero for constant potential and each component of flux takes
the form

F�(�) = − 1

2

NedC∑
j=1

��
j� j� (24)

where NedC is the number edges of the primal grid cell. Further details of the formulations are
given in References [12–16].

4. HIGHER-ORDER MULTI-PHASE FLOW APPROXIMATIONS

The general finite-volume discretization of Equation (1) for multi-phase flow on unstructured grids
takes the form

(Sn+1
pi − Snpi )�i + �t

NedV∑
j=1

fp(S
n+q
L ,Sn+q

R )FTe(i, j) (�
n+1) = �tMpi (25)

for the pth phase continuity equation, where Sn+q
L ,Sn+q

R are the left- and right-hand values of
the phase saturation vectors with respect to edge e(i, j) and n + q denotes the time level of the
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Figure 2. Higher-order support.

scheme. Here FTe(i, j) =�Fe(i, j)(�) and Mpi denotes the pth phase flow rate, prescribed at wells
and is zero otherwise. The phase continuity equations are coupled through the discrete pressure
equation

NedV∑
j=1

�(Sn+q
L ,Sn+q

R )Fe(i, j)(�
n+1) = Mi (26)

The system Equations (25) and (26) are either solved sequentially with q = 0 corresponding
to implicit pressure explicit saturation (IMPES), or fully implicitly with q = 1 leading to a fully
coupled implicit formulation. Note that for constant total mobility � the pressure equation Equation
(26) reduces to the single phase pressure equation Equation (19). The approximate flux is defined
according to the sign of the local wave direction wp, evaluated here at the edge mid-point. Referring
to Figure 2, with respect to a local frame of reference aligned with the direction i to k along the
edge vector �ri,k , the standard reservoir simulation upwind scheme is written as

fp(S
n+q
L ,Sn+q

R ) =
⎧⎨
⎩
fp(S

n+q
L ) wp�0

fp(S
n+q
R ) wp<0

(27)

and the first-order upwind scheme, (known as single-point upstream weighting in the reservoir
simulation literature [1]) is defined with Sn+q

L =Sn+q
i and Sn+q

R =Sn+q
k .

4.1. Higher-order scheme

A higher-order approximation is now introduced with respect to the saturation variables. (For the
remainder of this section superfix n + q is omitted and it is understood that all saturations are
computed at level n+q depending on the choice of scheme formulation.) The scheme is expressed
as a two-step process.

Higher-order states are defined by extending the MUSCL formalism [33] to higher dimensions.
The procedure involves calculating higher-order left- and right-hand side states relative to the
mid-point of each edge e (along which flux is to be defined) by expansions about the edge vertices
at i and k, Figure 2. As in one dimension, the expansions are constrained with slope limiters to
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ensure that the higher-order data satisfy a local maximum principle, preventing the introduction
of spurious extrema. First we define the difference in S over the edge e Figure 2, as

�Ski =Sk − Si (28)

where it is now understood that �S with a double suffix denotes a difference in S. Referring to
Figure 2 the left and right states SL and SR at the mid-point of the key edge e (joining vertices i
and k) are expressed as

SL =Si + 1
2�

+�Ski (29)

where �+ is a function of

r+
ki = (�Siu/�Ski ) (30)

and

SR =Sk − 1
2�

−�Ski (31)

where �− is a function of

r−
ki = (�Sdk/�Ski ) (32)

The differences �Siu and �Sdk are well defined on a structured grid, where the locations of Su Sd
would correspond to the next upstream and downstream nodes of the grid, respectively. However,
extension to unstructured grids requires special construction of the differences �Siu and �Sdk .

Directional differences are constructed by extrapolating along the key edge defined by vector
�rki in the respective upstream and downstream directions, see arrows in Figure 2. Here, the
procedure is illustrated for a triangular mesh.

Extrapolation of the respective upstream and downstream data is constrained such that positivity
holds for a scalar equation. The upstream triangle i, 1, 2 is labelled TU and the down stream triangle
k, 3, 4 is labelled TD. The space vector corresponding to edge e (drki ) is extrapolated into the
respective triangles TU, TD, see arrows in Figure 2. This is illustrated further with respect to vertex
i . The edge vector is extrapolated to the point of intersection u, on the opposite edge of the triangle
TU, Figure 2. The upwind difference is then obtained via the expansion

�Siu =∇STU · driu (33)

and for a linear approximation of S over the triangle TU the right-hand side of Equation (33) is
equal to the convex average of triangle edge differences with

�Siu = (1 − �)�Si1 + ��Si2 (34)

where 1 − ��0 and ��0 is the ratio of area of sub-triangle i, 1, u to area of triangle TU. In order
to impose a maximum principle with respect to TU and edge e, the limiter �+ is defined by

�+ = �(r+
ki ) (35)

where r+
ki is defined by Equation (32) and �(r) is any classical slope limiter [33, 36]. The

higher order reconstruction is then bounded between Sk and Su . By convexity (Equation (34))
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Su = (1 − �)S1 + �S2, thus bounds are such that

min
TU∪e{S}�SL�max

TU∪e{S} (36)

over triangle TU and edge e yielding a local maximum principle with reconstruction reducing to
first order locally at two dimensional extrema.

In cases where coincidence or near coincidence is detected between the extrapolated edge and an
upwind triangle edge the limiting is collapsed to be entirely edge based. A similar convex average
interpolant is constructed with respect to vertex k for Sd , using the right hand bold triangle TD,
together with analogous limiter bounds that now depend on �(r−

ki ) and the edge slopes �Ski , �S3k
and �S4k , ensuring a maximum principle with min{S}�SR�max{S} over TD and edge e.

This scheme is essentially local edge diminishing (LED) in motivation [34, 35], but the higher-
order reconstruction is applied to the data, in this work the saturation field. This completes the
definition of the higher-order states. The second step of the scheme uses the upwind flux where
each higher-order approximation of phase saturation is upwinded according to the direction of
the phase wave speed, using Equations (29) and (31) in Equation (27). Any one of a number of
limiters could be used, here limiting is based on the van-Leer limiter

�(r) = max

(
0,min

(
2r, 2,

(1 + r)

2

))
(37)

Further details on limiters are presented in Reference [36] and general discussion of higher-order
schemes is presented in Reference [37]. An implicit formulation is employed here. Implicit flux-
limiting schemes for reservoir simulation were first presented in Reference [4], where a weighted
Crank–Nicholson scheme is developed. A formal analysis of the implicit properties of the schemes
presented here together with a study for arbitrary unstructured grid distortion is beyond the scope
of the paper. An IMPES formulation could also be employed. Time accuracy of the methods is
still under development. A common approach is the use of the Runge–Kutta method [38] for the
explicit time integration of the convective equations. Note as before, that the first-order flux is
recovered locally if the limiters are set to zero. A three-dimensional extension of this scheme is
presented in Reference [39].

5. FLUX-CONTINUOUS CVD AND CONTRAST WITH CVFE

In contrast to the above CVD schemes where flow variables and rock properties are assigned to the
control-volumes, the CVFE formulation assigns flow variables to the vertices and rock properties
to the cells or elements. The CVFE formulation is not flux continuous in general and it is well
known that this type of approximation can cause spreading of information when rapid changes in
rock properties occur, e.g. References [40, 41]. The spreading effect can be understood by con-
sidering a checker board variation in (diagonal isotropic) permeability over a square domain and
imposing a uniform (horizontal) pressure drop across the domain, with solid wall conditions at
the top and bottom. If the white squares are assigned zero permeability, there should be no flow
through the domain due to the symmetry of the problem. However, the CVFE scheme permits
a mean non-zero flux, since by definition permeability is assigned to the cells and pressures are
defined on cell corners, and a non-zero mean (arithmetic) flux arises that is proportional to the
product of cell permeability multiplying cell-edge pressure differences. The exact homogenized
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permeability for this case is given by the geometric mean which is zero [42]. While the convergence
of the CVFE scheme in the limit under mesh refinement is well known [43], this example illus-
trates the inherent spreading of flow information due to the CVFE approximation for any grid of
finite scale.

The correct flow behaviour is faithfully replicated by the flux-continuous CVD schemes presented
above for any grid level. In this case, the squares are the control-volumes and the most primitive
diagonal tensor flux applies, proportional to pressure difference multiplying the harmonic mean of
permeability, which is zero. The examples that follow in the next section illustrate this fundamental
difference in behaviour between CVD and CVFE. The examples also show that while higher-order
fluid transport approximations can improve a low-order result, the higher-order schemes do not
compensate for the loss of information inherent in the CVFE Darcy flux.

6. RESULTS

The test cases involve two-phase flow (oil–water) initial oil saturation is prescribed and water is
injected. Water saturation contours are shown in each case. Solid wall (zero normal flow) boundary
conditions are applied on all exterior boundaries of each reservoir domain. The grids employed in
these cases are smooth. In all cases flow rate is specified at the (inflow) injector and pressure is
prescribed at the (outflow) producer.

6.1. Case 1

The first case is a study of grid orientation induced by a triangular grid shown in Figure 3. The
permeability tensor is assumed to be diagonal isotropic so that the pressure field is essentially
Laplacian in this case. Injection and production wells are located half-way along opposite sides
of the rectangular domain, Figure 3 water saturation contours are shown at 0.25 pore volumes PV
injected, Figure 4. The first result Figure 4(a) shows the effect of employing a two-point Darcy
flux approximation and first-order upwind scheme for the convective flux. This is still the most
commonly used method in reservoir simulation. The two-point Darcy flux introduces an O(1)
error in flux [14] due to the non-orthogonality of the grid in this case. The result obtained with

I P

Figure 3. Triangular grid orientation study.
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(a) (b) (c)

Figure 4. (a) Two-point Darcy flux—first order; (b) consistent Darcy flux—first order;
and (c) consistent Darcy flux—higher order.

I

P

1 2

43

Figure 5. Quarter five-spot cascade and boundary conditions.

a consistent Darcy flux approximation and first-order convective flux is shown in Figure 4(b).
While the scheme is consistent and the solution shows slightly more symmetry in contour profile
than the previous scheme with in result Figure 4(a), the front still retains a bias in the direction
of triangulation indicating that some grid influenced orientation remains. The result obtained with
a consistent Darcy flux approximation and higher-order convective flux is shown in Figure 4(c).
The higher-order scheme provides considerable improvement in resolution of the Buckley Leverett
shock front and expansion together with an almost symmetric profile. The results demonstrate the
need for both a consistent Darcy flux approximation and higher-order convective flux.

6.2. Case 2

The second case involves a high-permeability domain divided by four non-intersecting low-
permeability barriers (with drop by six orders of magnitude in permeability) aligned in the shape
of a cross, Figure 5 the configuration permits flow to be channelled through the mid-section. The
permeability tensor field is defined to be diagonal isotropic in the lower-left- and top-right-hand
domains (Sections 1 and 4) and a full permeability tensor is imposed in the lower-right- and
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(a) (b)

Figure 6. (a) CVFE grid; and (b) CVD grid.

(a) (b)

Figure 7. (a) CVFE first order; and (b) CVFE higher order.

upper-left-hand domains (Sections 2 and 3) with principal axes at 45◦ to the domain axes and
larger principal value (ratio 9:1) along the orthogonal to the right-hand diagonal of the domain.
Standard quarter five-spot boundary conditions are imposed with an injector and producer placed
at the bottom-left- and top-right-hand corners, respectively. The low-permeability barriers induce
a cascade effect in the usual quarter five-spot configuration. This causes the first and fourth quarter
domains to effectively act as a sequence of quarter five-spot configurations, as the flow exits the
first region (produced) it enters the fourth quarter of the domain (injected) so that the expected
flow pattern is a repeated quarter five-spot configuration in sequence.

The low- and higher-order CVD schemes are compared with the low- and higher-order CVFE
schemes for this case at 0.95 PV injected using the grids shown in Figure 6(a) and (b). The grids
have been chosen so as to maintain the same problem and permeability variation with respect to the
scheme formulations. The CVFE grid of Figure 6(a) shows that the permeability is defined cellwise
over the triangles, while the CVD grid shows that permeability is assigned to control-volumes.
First- and higher-order CVFE results are shown in Figure 7 and the respective CVD results are
shown in Figure 8.

The first-order CVFE scheme is showing strong flow across the low-permeability barriers par-
ticularly near the domain centre. The CVFE saturation contours also indicate flow into the second
and third quarter sections of the domain, which should remain essentially no-flow regions in this
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(a) (b)

Figure 8. (a) CVD first order; and (b) CVD higher order.

problem. This flow is being partly induced by the effect of the full tensor in that region. In sharp
contrast, the resolution of the front in the neighbourhood of the low-permeability barriers is evident
in the case of the first-order CVD scheme Figure 8(a), the CVD scheme provides much clearer
resolution of flow near the low-permeability barriers with little sign of flow into the no-flow regions
(second and third domain sections) in this problem.

While the higher-order CVFE scheme yields sharper shock fronts than the first-order CVFE
scheme Figure 7(b), the higher-order scheme cannot compensate for the basically incorrect trend in
flow behaviour predicted by the CVFE scheme. The averaging effect that is inherent in the CVFE
formulation induces flow across the low-permeability barriers despite the use of a higher-order
convective flux approximation. Consequently, while shocks are sharper the fronts are in the wrong
physical location.

The higher-order CVD scheme provides further improvement in resolution of the shock fronts
compared to the first-order CVD scheme Figure 8. The low-permeability barriers are clearly
detected by the higher-order CVD scheme and the computed fronts conform to the expected
quarter five-spot ‘cascade’. The difference between higher-order CVD and higher-order CVFE
highlights the benefits of the CVD formulation which uses the same number of degrees of freedom
for flow variable approximation.

6.3. Case 3

The third case involves a heterogeneous permeability field [44], Figure 9(a). The primal (flow-
based) unstructured grid ([12]) composed of quadrilaterals and triangles is shown in Figure 9(b).
While the same quadrilateral-triangular grid of vertex flow variables is used for both the CVD and
CVFE schemes, the permeability field is upscaled to the primal grid cells for the CVFE scheme
and upscaled to the polygonal control-volumes for the CVD scheme. The CVD grid of polygonal
control-volumes (dual grid in bold) with permeability distribution is shown in Figure 10, overlaying
the primal grid. The boundary conditions are indicated in Figure 9(a). All results are shown at 0.4 pv
injected. The result obtained with the first-order CVFE scheme is shown in Figure 11(a) and the
corresponding result using the first-order CVD scheme is shown in Figure 11(b). In this case flow is
largely confined along predominantly channelled paths leading to a smaller difference in character
between solutions. However, the CVFE result (Figure 11(a)) is still more spread across high
permeability channels, compared to the continuous Darcy-flux CVD scheme result in Figure 11(b).
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(a) (b)

Figure 9. (a) Permeability field; and (b) primal grid.

(a)(a) (b)

Figure 10. (a) Permeability upscaled to dual grid (CVD), primal grid also shown; and
(b) Control-volume dual grid.

(a) (b)

Figure 11. (a) 1st Order CVFE; and (b) 1st Order CVD.

The results obtained with the higher-order CVFE scheme and higher-order CVD scheme are
shown in Figures 12(a) and (b) respectively. Both higher order methods show distinct improvements
in results compared to their lower order counter parts above. However, while the higher-order CVFE
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(a) (b)

Figure 12. (a) Higher-order CVFE; and (b) higher-order CVD.

scheme improves the first order CVFE result, the higher-order CVD scheme yields the sharpest
flow resolution. The CVD results show the benefits of coupling a higher-order convective flux
approximation together with continuous Darcy-flux approximation for modelling two-phase flow
in a heterogeneous medium on unstructured grids.

7. CONCLUSIONS

A novel higher-order convective flux approximation is coupled with consistent and efficient con-
tinuous Darcy flux approximations. The coupling leads to new schemes for reservoir simulation
on structured and unstructured grids in two dimensions.

Comparisons for two-phase flow are presented with current methods in reservoir simulation and
with the standard control-volume finite element CVFE scheme using exactly the same number
of degrees of freedom as the new schemes. The comparisons demonstrate the benefits of the
new higher-order CVD schemes both in terms of front resolution with significant reduction in
unstructured grid orientation together with improved medium discontinuity resolution.

The CVFE scheme is observed to have an inherent tendency to average flow effects in the
presence of rapid changes in permeability on grids of finite level. While the higher-order CVFE
scheme improves front resolution compared to the first-order CVFE scheme, the higher-order
CVFE scheme cannot compensate for loss of crucial Darcy flux information that occurs as a
consequence of the CVFE formulation.

The test cases show the fundamental advantages of the higher-order CVD scheme (for multi-
phase flow) both in terms of improved convective front resolution and the scheme’s ability to
detect rapid changes in permeability and yield consistent flow behaviour.
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